博客
关于我
基于高程的地面点云信息提取
阅读量:781 次
发布时间:2019-03-24

本文共 905 字,大约阅读时间需要 3 分钟。

利用MATLAB和CloudCompare提取道路点云数据

实验背景与目标

本实习旨在通过结合MATLAB和CloudCompare软件,对机载LiDAR点云数据中道路特征进行提取和分析。主要目标包括熟悉点云数据的存储格式(如xyz、ply、las)及处理工具,并掌握基于特征点提出的道路检测方法。

数据背景

实验基于LAS格式的点云数据,这种格式因其开放性和互操作性已成为工业标准。LAS文件采用分块存储方式,包含激光点坐标、多次回波信息、强度、扫描角、分类信息等多种元数据。理解这些结构对于点云数据的筛选与处理至关重要。

道路点云特征

道路点云数据具有以下显著特征:

  • 高度特征:道路点的高程普遍低于周围建筑物、植被等地物,使用高程信息可有效筛选道路点。
  • 平坦特征:道路表面较为平坦,可通过计算点云的法向量进行坡度分析。
  • 几何特征:道路呈长条带状,且彼此连通,便于欧式聚类处理。
  • 基于上述特征,本实习提出了一种基于高程信息的点云筛选方法。

    数据处理方法

    数据导入与预处理

  • 在CloudCompare中导入LAS文件,提取三维坐标数据并保存为txt格式。
  • 使用MATLAB编写脚本,对提取的坐标数据进行高程分割处理。
  • 高程筛选

    在MATLAB中,基于参考点的高程计算和相对高程差的计算得出研究区域高程数据。通过调整高程阈值,逐步筛选出道路点云数据。

    叠加处理

    将高程信息在CloudCompare中叠加,基于高程差异进行多层次筛选和点云可视化。

    聚类优化

    对去除杂志点的聚类处理,基于几何连通性进一步优化道路点云数据。

    实验结果与分析

    通过多次调整高程阈值和聚类参数,实现了较为准确的道路点云提取。结果显示,适当调整高程阈值和优化聚类算法能够显著减少杂志点影响,提升道路点云的准确率。

    工具与方法总结

    本实习通过结合MATLAB的点云处理能力和CloudCompare的可视化功能,成功实现了基于高程特征的道路点云提取方法。该方法充分利用了LiDAR数据的高程信息,结合几何特征,显著提升了提取精度,为后续的点云分析奠定了坚实基础。

    optimised content based on above rules

    转载地址:http://agkuk.baihongyu.com/

    你可能感兴趣的文章
    ocp最新题库之052新题带答案整理-36题
    查看>>
    OCP题库升级,新版的052考试题及答案整理-18
    查看>>
    OCR:文字识别(最详细教程)
    查看>>
    OCR使用总结
    查看>>
    OCR识别:身份证信息加密传输
    查看>>
    octave错误-error: ‘squareThisNumber‘ undefined near line 1 column 1
    查看>>
    Octotree Chrome插件离线安装
    查看>>
    OCTO作为美团的高性能服务通信框架,究竟能不能称得上是杀手锏呢?
    查看>>
    OC中关于给NSString 赋 nil和@""的区别
    查看>>
    OC字符串方法汇总
    查看>>
    OC学习6——面相对象的三大特性
    查看>>
    OC点语法介绍和使用以及@property关键字
    查看>>
    oc知道经纬度求位置
    查看>>
    OC高效率52之提供“全能初始化”方法
    查看>>
    oc--习题
    查看>>
    oday!POC管理和漏洞扫描小工具
    查看>>
    ODBC的JAR包和PLSQL
    查看>>
    ODE网络:一场颠覆RNN的革命即将到来
    查看>>
    Odin 开源项目教程
    查看>>
    odoo14配置阿里云免费SSL证书
    查看>>